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Nearly Vertical Hopf Bifurcation for a Passively
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Passively Q-switched microchip lasers generate strongly pulsating intensity
oscillations that emerge from a Hopf bifurcation point. We show that this
bifurcation is nearly vertical and explain why strongly pulsating oscillations
are immediately observed as we pass the Hopf bifurcation point. The laser
dynamical problem is mathematically a singular perturbation problem which we
investigate. The leading order problem is conservative and corresponds to
Lotka�Volterra equations.
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singular Hopf bifurcation; Lotka�Volterra equations.

1. INTRODUCTION

Passively Q-switched lasers are lasers with an intracavity saturable absor-
ber.(1�2) The absorption in the passive medium acts as an intensity depen-
dent loss that changes the quality coefficient Q of the cavity. In case of
strong saturability, the saturable absorber operates like a passive switch
and, under some conditions, may switch spontaneously leading to short
and intense pulses. These so-called passive Q-switching oscillations are of
practical interest for applications that request extremely short (<1 ns)
high-peak-power (>10 kW) pulses of laser light. The short pulse widths
are useful for high-precision optical ranging with applications in automated
production. The high peak output intensities are needed for efficient non-
linear frequency generation or ionization of materials, with applications in
microsurgery and ionization spectroscopy. Previous numerical and analytical
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studies concentrated on passively Q-switched gas lasers.(4) They have
shown that the passive Q-switching oscillations correspond to a limit-cycle
which may emerge from a homoclinic orbit located very close to the laser
threshold.(6, 7) This explains the pulsating nature and the relatively large
period of these oscillations. Most theoretical studies have concentrated on
gas lasers(4, 8) or semiconductor lasers.(5, 9) Recently, passively Q-switched
solid state microchip lasers have been investigated both experimentally(10, 11)

and numerically.(12, 13) By contrast to gas or semiconductor lasers, these
microchip lasers generate strongly pulsating oscillations through a Hopf
bifurcation mechanism. The main objective of this paper is to explain why
these large amplitude oscillations are observed as soon as we pass the Hopf
bifurcation point. As we shall demonstrate, the bifurcation is singular and
needs to be analyzed in detail. Singular Hopf bifurcation problems have
been studied in the past in order to describe the transition to pulsating
chemical or biological oscillations.(20) However, the laser bifurcation is
different and leads to more complex oscillations.

The paper is organized as follows. In Section 2, we introduce the rate
equations for a large class of lasers. We show that these lasers naturally
exhibit damped intensity oscillations which satisfy a degenerate form of
Lotka�Volterra equations. In Section 3, we concentrate on passively
Q-switched microchip lasers and investigate the Hopf bifurcation by using
asymptotic methods. Lotka�Volterra equations appear as the leading order
problem and allow us to describe the nearly vertical bifurcation branch.

2. SINGLE MODE LASER RATE EQUATIONS

A simple description of the process of amplification of light based on the
ideas of spontaneous and stimulated emissions leads to a phenomenological
description of the laser in terms of two equations for the atomic population
inversion density and the electromagnetic energy density in the laser cavity
(ref. 2, p. 13). In its simplest version, these rate equations apply to an
idealized active system consisting of only two energy levels. If I represents
the intensity of the laser field and if N#N2&N1 denotes the difference
between the excited and ground state population densities, the dimen-
sionless rate equations for I and N are given by

I$=I(&1+N ), N$=#(A&N&NI ) (1)

In these equations, prime means differentiation with respect to time
measured in units of }&1; } is the decay rate of the field in the laser cavity
due to loss of photons by mirror transmission, scattering, etc. A is the
pump parameter which measures the energy injected into the laser. Its
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equals the population inversion in the absence of stimulated emission. If
A>1, a non zero intensity steady state is possible and represents the
desired lasing action. ### | | �} is defined as the normalized decay rate of N
towards its equilibrium state in the absence of laser light due to spon-
taneous emission. The following table gives typical values of } and # | | for
three different lasers used in laboratories and in applications.(14, 15)

Although the values of } and # | | are relatively different between lasers, we
note that # is typically an O(10&3) small quantity. For microchip solid
state lasers, # is even smaller. This small value of # is responsible for the
laser intensity oscillations as we shall now explain.

laser } (s&1) # | | (s&1)
CO2 108 2.5_105

solid state 106 4_103

semiconductor laser 1012 109

If A>1, the non-zero intensity solution is the only stable long time
regime. However, it is well know that the laser may exhibit transient inten-
sity oscillations if the steady state is perturbed. These oscillations are called
the laser relaxation oscillations and can be analyzed by investigating the
limit # � 0 of Eq. (1).(16�18) Assuming N&1=O(- #), this limit leads to the
equations of a conservative oscillator given by

I$=I(&1+N ), N$=#(A&1&I ) (2)

These equations admit a one parameter family of periodic solutions which
are useful when we analyze the effect of a small external perturbation such
as a periodic modulation of a parameter, an injected signal, or optical feed-
back. Equation (2) only admits the non zero intensity steady state (the zero
intensity steady state has moved to infinity in the limit # � 0). The possible
similitude between Eq. (2) and the Lotka�Volterra equations which exhibit
both a center and a saddle has been suspected (first reference in ref. 17) and
discussed in connection with the two mode laser problem.(19) Indeed,
Eq. (2) is equivalent to a degenerate form of Lotka�Volterra equations (see
Appendix). In the next section, we show that the complete Lotka�Volterra
equations appear as the leading order equations for passively Q-switched
microchip lasers.

3. PASSIVE Q-SWITCHED MICROCHIP LASERS

It was recently shown that passively Q-switched microchip lasers are
capable of producing short and intense pulses.(10, 11) The small size of these
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lasers along with their simplicity make them attractive for many applica-
tions. This has motivated the recent interest to model and simulate these
pulses.(12, 13) The pulsating response of microchip lasers is well described by
rate equations. Assuming a fast absorber, Eq. (1) is modified as

I$=I \&1+N&
A�

1+:I + (3)

N$=#(A&N&NI ) (4)

In these equations, A� is the pump parameter of the absorbing medium. The
parameter : represents the relative saturability of the absorber with respect
to the amplifying medium. Estimations of the parameters for microchip
lasers(12, 13) indicates that # is extremely small (#=O(10&6�10&7)), that
:<1 (:=O(10&1�10&2)) and that A� =O(1) is either larger or smaller than
one depending on the absorber. The control parameter A=O(1) is
assumed larger but close to the laser first threshold defined by

Ath#1+A� (5)

As A is progressively increased, the zero intensity solutions looses its
stability at A=Ath . A non zero intensity steady state then appears and is
given by

I&
A&Ath

Ath&:A�
(6)

for A close to Ath . If : is sufficiently small, Ath&:A� is positive and the
bifurcation is supercritical and stable. This is the case for the microchip
lasers(13) but not for gas or semiconductor lasers which exhibit an : much
larger than 1. As A is further increased, the stable steady state solution (6)
undergoes a Hopf bifurcation at a critical intensity I=IH . From the linear
stability analysis, we find that IH satisfies the condition

A� :I&#(1+I )(1+:I )2=0 (7)

and approaches the limit

IH&
#

A� :
(8)
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as # � 0. The corresponding values of A=AH and N=NH are obtained
from the steady state equations evaluated at I=IH i.e.,

NH=1+
A�

1+:IH
and AH=NH(1+IH) (9)

Numerical studies of the periodic solution of Eqs. (3) and (4) for
progressively smaller values of # indicates that the limit-cycle solution

Fig. 1. Hopf bifurcation to pulsating intensity oscillations. The bifurcation diagram of the
limit-cycle solutions of Eqs. (3) and (4) is determined for two different values of #. The values
of the fixed parameters are A� =4 and :=0.1. The figure represents the maximum and mini-
mum of the intensity I(t) as a function of the control parameter A. The figure also shows the
nonzero intensity steady state that appears at Ath=5. Note that the branch of periodic solu-
tions moves to Ath as we decrease # and becomes more and more vertical: for #=0.05, the
change of the maximum intensity occurs in a small domain A&AHt0.18 while for #=0.03,
the same change appears in the domain A&AHt0.06.
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quickly becomes pulsating as we deviate from the Hopf bifurcation point.
Figure 1 shows the bifurcation diagram of the periodic solutions for two
different values of #. The intensity oscillations are nearly harmonic as
A&AH increases from zero but become strongly pulsating as soon as the
minimum intensity approaches zero. The limit-cycle oscillations then
correspond to a sequence of high intensity pulses separated by long inter-
vals where the intensity is almost zero.

We wish to investigate the behavior of the Hopf bifurcation branch as
# � 0. To this end, we apply asymptotic methods appropriate for the
description of singular Hopf bifurcations.(20) We first rewrite Eqs. (3) and
(4) in terms of deviations from the Hopf bifurcation point. Specifically, we
introduce the new variables s, x and y defined by

s=#t, N=NH+#x, I=IH(1+ y) (10)

and expand A&AH in power series of # as

A&AH=#*1+#2*2+ } } } (11)

Introducing (10) and (11) into Eqs. (3) and (4) leads to the following equa-
tions for x and y

x$=&x(1+IH)&#&1NHIH y&IH xy+(*1+#*2+ } } } ) (12)

y$=(1+ y) _x+
A� aIH#&1y

(1+:IH)(1+:IH(1+ y))& (13)

where prime means differentiation with respect to s. Using (8) and the fact
that NH=Ath+O(#), the leading order problem as # � 0 is given by

x$=&x&
Ath

A� a
y+*1 (14)

y$=(1+ y)(x+ y) (15)

The right hand side of Eq. (15) suggests that we may further simplify these
equations if we introduce the new dependant variables

u=x+ y and v= y (16)

In terms of (16), Eqs. (14) and (15) become

u$=v(&|2+u)+*1 (17)

v$=(1+v) u (18)
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where | is defined by

|#�Ath

A� :
&1 (19)

We note that Eqs. (17) and (18) are Lotka�Volterra equations if *1=0 (see
Appendix). These equations admit an one-parameter family of periodic

Fig. 2. Periodic solutions. The Lotka�Volterra equations are conservative and admit an
one-parameter family of periodic solutions. We represent six orbits in the phase plane (x, y).
x and y are the physical variables and represent the deviations of N and I from their Hopf
bifurcation values (see (10)). The orbits are surrounding a center and are bounded by two
separatrices which emerge from a saddle point (the singular points and the separatrices are
also shown in the figure). The arrow indicates the direction of the trajectories. The different
orbits have been obtained from Eqs. (14) and (15). The values of the parameters are A� =4 and
:=0.1.
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solutions (see Fig. 2). The oscillations are nearly harmonic and 2?�|-peri-
odic close to the center (u, v)=0 and become pulsating as the maximum
intensity (max of v) increases. If *1y0, Eqs. (17) and (18) admit either
decaying or growing oscillations. Thus, the condition for bounded periodic
solutions requires that *1=0. We conclude that the bifurcation branch is
vertical at this order of the perturbation analysis. The next correction of
the bifurcation parameter (i.e., *2) appears at the next order of the pertur-
bation analysis and a solvability condition allows us to describe how the
amplitude of (u, v) changes in the thin domain A&AH=O(#2). The for-
mulation of the bifurcation equation is not difficult but its solution needs
to be determined numerically. The details of this study do not contribute
to our physical understanding of the laser sharp bifurcation and will be
given elsewhere.

4. SUMMARY

The laser intensity oscillations are intimately connected to Lotka�
Volterra oscillations. In the first part of our analysis, we showed that the
laser nearly conservative oscillations (or laser relaxation oscillations)
satisfy a degenerate form of the Lotka�Volterra equations. In the second
part of our analysis, we considered a microchip solid state laser with a
saturable absorber which admits a Hopf bifurcation to strongly pulsating
oscillations. The limiting problem is now given by the complete Lotka�
Volterra equations. This observation has two immediate consequences on
our physical understanding of the laser oscillations. First, Lotka�Volterra
equations describe how the limit-cycle oscillations deform as we increase
the amplitude along the nearly vertical bifurcation. Second, the Lotka�
Volterra equations admit two simple separatrices (namely, v=&1 and u=
|2) which are connecting a saddle point. As the amplitude of the periodic
solution becomes large, the limit-cycle orbit becomes asymmetric and
spend most of its time near these separatrices. This suggests to reexamine
the limit-cycle solution by determining separate approximations valid for
different parts of the orbit. We may benefit from earlier asymptotic studies
of the Lotka�Volterra large amplitude oscillations.(23)

APPENDIX. LOTKA�VOLTERRA EQUATIONS

Volterra's (1926) interest(21) arose from an observed ecological situa-
tion involving two interacting populations. The model equations he
suggested are the same as those proposed by Lotka (1920)(22) for a
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hypothetical reaction mechanism. The Lotka�Volterra equations for U and
V are given by

U$=U(a&bV ), V$=V(&c+dU ) (20)

where the coefficients a, b, c and d are positive constants.
We first show that the reduced laser rate equations (2) are equivalent

to a degenerate form of Eq. (20). Consider the limit b � 0 of Eq. (20)
assuming

a=O(b), c=O(b&p) and d=O(1) (21)

where 0<p<1. This limit means that the non-zero steady state of Eq. (20),
given by

(Us , Vs)=\c
d

,
a
b+ (22)

moves to infinity as b � 0 (more precisely, Us � � but Vs remains fixed).
Introducing the new variables

W=d \U&
c
d + , V=v (23)

and assuming W=O(1), Eq. (20) simplifies as

W$=b(c+W ) \a
b

&V +&bc \a
b

&V + (24)

V$=WV (25)

as b � 0. The system of Eqs. (24) and (25) is identical to Eq. (2) with
W=N&1, V=I, bc=#=O(b1& p) and a�b=A&1=O(1).

We next show that Eqs. (17) and (18) with *1=0 are equivalent to
Lotka�Volterra equations. Substituting

u=|2&V, v=&1+U (26)

into Eqs. (17) and (18), we obtain Eq. (20) with b=c=d=1 and a=|2.
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